

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

	try not defining class if there are many staticmethods, using module may be sufficient

	do not always follow js-stellar-base’s practice

	each class should have a __init__ explicitly

	using if __name__ == '__main__': idiom for a poor man’s unittest

	try adding more possible exception handling; exit program before being late

	try not using memoryview

	do not use builtin names

 [image: Build Status] [https://travis-ci.org/StellarCN/py-stellar-base] [image: PyPI] [https://pypi.python.org/pypi/stellar-base]

Installation

Install

pip install stellar-base

Quick Start

1. Create a Stellar key pair

There are 2 methods for generating a key pair in py-stellar-base.

1.1 Random generation

from stellar_base.keypair import Keypair
kp = Keypair.random()

1.2 Deterministic generation

In this method the key pair is deterministically generated from a mnemonic string, also known as “seed phrase”.
First we generate a Unicode mnemonic string:

from stellar_base.utils import StellarMnemonic
sm = StellarMnemonic("chinese") # here we use chinese, but default language is 'english'
m = sm.generate()
or m = u'域 监 惜 国 期 碱 珍 继 造 监 剥 电' (must add u'' before the string if using Python 2)

The call sm.generate() prints out the generated mnemonic string, which is a phrase made of random words separated by
spaces. You should either write this phrase down or memorize it. Do not share your mnemonic string with anyone.

Now we use the mnemonic string m to generate the key pair:

kp = Keypair.deterministic(m, lang='chinese')

And we can use the mnemonic string m to generate multiple key pairs:

kp1 = Keypair.deterministic(m, lang='chinese', index=1)
kp2 = Keypair.deterministic(m, lang='chinese', index=2)

After the key pair generation, we can get a public key and a seed from it:

publickey = kp.address().decode()
seed = kp.seed().decode()

The public key is also your account address. If someone needs to send you a transaction, you should share with them this key.
The seed is your secret. For safety, please keep it local and never send it through the Internet.

Whenever we forget/lose the public key, we can regenerate the key pair from the seed:

from stellar_base.keypair import Keypair
kp = Keypair.from_seed(seed)

If we forget/lose both the public key and the seed, we can regenerate the key pair from the mnemonic string:

from stellar_base.keypair import Keypair
seed_phrase = '...' # the word sequence that you wrote down or memorized
kp = Keypair.deterministic(seed_phrase, lang='chinese')

This is my favorite key pair in TESTNET, let’s use them in the following steps.

publickey = 'GDVDKQFP665JAO7A2LSHNLQIUNYNAAIGJ6FYJVMG4DT3YJQQJSRBLQDG'
seed = 'SCVLSUGYEAUC4MVWJORB63JBMY2CEX6ATTJ5MXTENGD3IELUQF4F6HUB'

2.Create Account

After the key pair generation, you have already got the address, but it is not activated until someone transfers at least 20 lumen into it.

2.1 Testnet

If you want to play in the Stellar test network, you can ask our Friendbot to create an account for you as shown below:

import requests
publickey = kp.address().decode()
r = requests.get('https://horizon-testnet.stellar.org/friendbot?addr=' + publickey)

2.2 Livenet

On the other hand, if you would like to create an account in the livenet, you should buy some Stellar Lumens from an exchange. When you withdraw the Lumens into your new account, the exchange will automatically create the account for you.
However, if you want to create an account from another account of your own, you may run the following code:

from stellar_base.keypair import Keypair
from stellar_base.asset import Asset
from stellar_base.operation import Payment
from stellar_base.operation import CreateAccount
from stellar_base.transaction import Transaction
from stellar_base.transaction_envelope import TransactionEnvelope as Te
from stellar_base.memo import TextMemo
from stellar_base.horizon import horizon_testnet, horizon_livenet

oldAccountSeed = "SCVLSUGYEAUC4MVWJORB63JBMY2CEX6ATTJ5MXTENGD3IELUQF4F6HUB"
newAccountAddress = "XXX"
amount = '25' # Any amount higher than 20
kp = Keypair.from_seed(oldAccountSeed)
horizon = horizon_livenet()
asset = Asset("XLM")
create op
op = CreateAccount({
 'destination': newAccountAddress,
 'starting_balance': amount
})
create a memo
msg = TextMemo('')
get sequence of new account address
sequence = horizon.account(kp.address()).get('sequence')
construct the transaction
tx = Transaction(
 source=kp.address().decode(),
 opts={
 'sequence': sequence,
 #'timeBounds': [],
 'memo': msg,
 #'fee': 100,
 'operations': [
 op,
],
 },
)
build envelope
envelope = Te(tx=tx, opts={"network_id": "PUBLIC"})
sign
envelope.sign(kp)
submit
xdr = envelope.xdr()
response = horizon.submit(xdr)

Then, you can check the status of this operation with the response.

3. Check account

3.1 Basic info

After creating the account, we may check the basic information of the account.

from stellar_base.address import Address
publickey = 'GDVDKQFP665JAO7A2LSHNLQIUNYNAAIGJ6FYJVMG4DT3YJQQJSRBLQDG'
address = Address(address=publickey) # address = Address(address=publickey,network='public') for livenet
address.get() # get the updated information

Now you can check the address balance, sequence, flags, signers, data etc.

print "balances: " + address.balances
print "sequence: " + address.sequence
print "flags: " + address.flags
print "signers: " + address.signers
print "data: " + address.data

3.2 Check payments

We can check the most recent payments by:
address.payments()

We can use three parameters to customize the query: limit, order, and cursor (paging_token), and the default value for them are respectively: limit=10, order="asc", cursor=0.

So if you need to check payments after a specific cursor, try:
address.payments(cursor='4225135422738433', limit=20, order='asc')

Horizon has SSE support for push data, if you really want to, use it like this: address.payments(sse=True, cursor='4225135422738433')

3.3 Check others

Just like payments, we can check transactions, effects, offers, and operations by:

address.transactions()
address.effects()
address.offers()
address.operations()

By the way, offers do not have SSE support.

4. Building transaction

We can build a transaction with a wrapper or from scratch.

4.1 Build with a wrapper

from stellar_base.builder import Builder
seed = "SCVLSUGYEAUC4MVWJORB63JBMY2CEX6ATTJ5MXTENGD3IELUQF4F6HUB"
builder = Builder(secret=seed) # builder = Builder(secret=seed, network='public') for LIVENET

How about sending Bob a payment?

 bob_address = 'XXX'
 builder.append_payment_op(bob_address,'100','XLM')

Or if you want to pay him with CNY:

CNY_ISSUER = 'GDVDKQFP665JAO7A2LSHNLQIUNYNAAIGJ6FYJVMG4DT3YJQQJSRBLQDG'# Just a Stellar address which issues asset CNY
builder.append_payment_op(bob_address, '100', 'CNY', CNY_ISSUER)

And maybe you need to carry a message:

builder.add_text_memo('Buy yourself a beer!') # string length <= 28 bytes

At last, sign & submit

builder.sign()
builder.submit()

Done.

Sometimes, we need to deal with multi-signature transactions. Especially when you get a xdr string (or transaction envelope xdr) from a friend or partner, which describes a multi-sig transaction. They may need you to sign on it too.

builder = Builder(secret=seed) # or builder = Builder(secret=secret, network='public') for LIVENET.
builder.import_from_xdr(xdr_string) # the xdr_string come from your friend
builder.sign()
builder.to_xdr() # generate new xdr string
or builder.submit() # submit to Stellar network

4.2 Build from scratch

from stellar_base.keypair import Keypair
from stellar_base.asset import Asset
from stellar_base.operation import Payment
from stellar_base.transaction import Transaction
from stellar_base.transaction_envelope import TransactionEnvelope as Te
from stellar_base.memo import TextMemo
from stellar_base.horizon import horizon_testnet, horizon_livenet

alice_seed = 'SAZJ3EDATROKTNNN4WZBZPRC34AN5WR43VEHAFKT5D66UEZTKDNKUHOK'
bob_address = 'GDLP3SP4WP72L4BAJWZUDZ6SAYE4NAWILT5WQDS7RWC4XCUNUQDRB2A4'
CNY_ISSUER = 'GDVDKQFP665JAO7A2LSHNLQIUNYNAAIGJ6FYJVMG4DT3YJQQJSRBLQDG'
amount = '100'

Alice = Keypair.from_seed(alice_seed)
horizon = horizon_testnet() # horizon = horizon_livenet() for LIVENET

asset = Asset('CNY', CNY_ISSUER)
create op
op = Payment({
 # 'source' : Alice.address().decode(),
 'destination': bob_address,
 'asset': asset,
 'amount': amount
})
create a memo
msg = TextMemo('Buy yourself a beer !')

get sequence of Alice
Python 2
sequence = horizon.account(Alice.address()).get('sequence')
Python 3
sequence = horizon.account(Alice.address().decode('utf-8')).get('sequence')

construct Tx
tx = Transaction(
 source = Alice.address().decode(),
 opts = {
 'sequence': sequence,
 # 'timeBounds': [],
 'memo': msg,
 # 'fee': 100,
 'operations': [
 op,
],
 },
)

build envelope
envelope = Te(tx=tx, opts={"network_id": "TESTNET"}) # envelope = Te(tx=tx, opts={"network_id": "PUBLIC"}) for LIVENET
sign
envelope.sign(Alice)
submit
xdr = envelope.xdr()
response = horizon.submit(xdr)

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

